NEW COLLEGE

OXFORD

Rapidly Integrating Vehicle Computers Using Simulation

Author: Matthew Rogers

Source: The New Collection, Vol. 14 (Aug., 2020), pp. 61-67

Published by: The Middle Common Room (MCR) of New College, Oxford
Stable URL: http://mcr.new.ox.ac.uk/journal/Contents2020.php

The New Collection is a double-blind peer reviewed journal published annually by the Middle Common
Room of New College, University of Oxford. For more information about The New Collection, please con-
tact new.collection@new.ox.ac.uk.

New College Oxford is a chartered charitable corporation registered with the Charity Commission (re-
gistered number 1142701) and whose registered office is Oxford, OX1 3BN.
New College Oxford® is a registered trade mark - No. 2588652

UNIVERSITY OF

OXFORD Copyright 2020 by The New Collection. All rights reserved. ISSN 1757-2541.

Rapidly Integrating Vehicle Computers Using Simulation

Matthew Rogers™
Department of Computer Science

Abstract

Millions of vehicles rely on embedded computers to function. Integrating these com-
puters is a complicated process, more so as different manufacturers try to work to-
gether. We develop the CAN Simulation Format (CSF), publishable by these manu-
facturers. A designer can use this CSF to mix and match ECU configurations, simu-
lating CAN traffic for each on the fly. This lets the designer test every configuration
without access to prototypes of every other computer. We implement this simula-
tion on hobbyist hardware, allowing us to test and develop with realistic CAN traffic.
As different computers are updated, this technology enables the system maintainer
to test different permutations of installed firmware versions, without modifying the
actual computers.

1. INTRODUCTION

Millions of vehicles rely on embedded computers to operate. These computers of-
ten have limited resources, with specialized hardware for upgrading and connecting
to them. A complicated supply chain, inherent to the multitude of manufacturers,
results in a series of problems for both the system designer, and each manufacturer.

A core problem for any component developer is integration testing. There needs
to be testing whenever any embedded component upgrades firmware, but for systems
with loose configurations each of the embedded devices could be on any firmware
version. To solve this, a developer needs to test against all permutations of major
firmware versions for complete test coverage. For modern vehicles this is a pipe

" matthew.rogers@cs.ox.ac.uk.

62 The New Collection, Volume 14, 2020

dream. Testing against one configuration is complicated, much less systems in vary-
ing patch states.

Currently developers queue for access to a software integration lab, or real vehicle.
More advanced groups may take a capture of the CAN Bus and replay it with their
ECU connected to simulate real traffic, but they would need to do this for every pos-
sible configuration, or guess at pruning the data. In applications with a limited supply,
such as military systems, getting any level of access is incredibly difficult.

To solve this problem we propose a standardized configuration document called
the CAN Simulation Format (CSF), which all ECUs publish so that anyone can simu-
late their traffic. We make this feasible for existing systems by automatically convert-
ing captured CAN traffic into this format for each ECU on the network. Using the
CSF a developer can simply decide on which ECUs they would like on the system,
and generate simulated traffic specific to that configuration. Using a 90 minute data
capture we produce the CSF, generate CAN messages, and transmit them in real time
across a CAN interface.

We will open with a brief background on CAN how a CAN Bus functions in Sec-
tion 2. This is followed by an analysis of different dynamic testing techniques, and
different ways to generate our CSF in Section 3. We then describe our testbed, exper-
iment and results in Sections 4, 5,6, before providing future work and concluding in
Sections 7 and 8.

2. BACKGROUND

Since the 1980s, automobiles rely on a physical standard known as the Controller
Area Network (CAN) [1]. Now, embedded computers known as Electronic Control
Units (ECUs) control the vehicle. These computers must share data and receive com-
mands, so they are all connected to the CAN network, broadcasting messages.

As vehicles get more complex to satisfy demands for safety, predictive mainten-
ance, and other functionalities, the number of ECUs speaking also increases. Modern
industrial standards such as J1939 [2] limit that number to 30 ECUs. Each ECU trans-
mits any number of message IDs, with the possibility of two ECUs transmitting the
same ID. This ID is 29 bits. During these 29 bits any number of ECUs may attempt to
speak. However, in CAN 0 is considered the dominant bit, meaning any ECU trying
to transmit a 1 while reading a 0 over the bus line will stop transmitting. This bit
level arbitration process is a key feature of CAN, ensuring higher priority messages
are transmitted in a timely manner instead of a straight queue.

Rapidly Integrating Vehicle Computers Using Simulation 63
I
AN
R AN
Test [<—inpu F{F
ECU | Rep!
Outputy¢ o
I
AN
Test [#inpul Timing r D
ECU [—outputy¢| Simulator I
N
IN
Test [#inpu Dala r &
ECU [—output-»| Simulator I

&
2

&

i

Figure 1: This figure depicts differences between each method of CAN dynamic testing.

3. DYNAMIC TESTING WITH CAN TRAFFIC
We identify three ways of doing dynamic testing with CAN Traffic:
+ Replaying Traffic

+ Simulating Traffic based on ECU timing: messages transmit at known time
intervals based on documentation

+ Simulating Traffic based on CAN data: the data going over the bus, such as
RPM, modifies what simulated data should be sent

A simplified diagram of the different approaches can be seen in Figure 1. Re-
playing traffic is the simplest option, and provides realistic data inputs for the testing
ECU, but the replay will not respond to data output by our ECU. Simulating traffic
based on pure timing data has a similar problem. Data parameters can be specific
for testing, but pure timing is a naive approach. The core difference is that capturing
replays, with details on the ECU configuration, is difficult. We would need a replay
for every possible system configuration to accurately reflect bus traffic, this approach
does not scale. If we assume we have a CSF to read, timing based simulations provide
more flexible input testing for our ECU. With vague requirements being a reality of
any engineering task, being able to test several ECU configurations greatly reduces
turn around time.

The third level of testing concerns a high fidelity simulation of CAN traffic,
where the rest of the network modifies their messages in response to the output of
our ECU. Hard coding this for one system is simple, but the nature of ECU configur-
ations makes this complex to do dynamically. For example, an Engine Control Mod-
ule (ECM) may send just engine data, brake and engine data, or a number of other
auxillary data points. One ECU could handle everything, but the system configura-
tion could call for a separate brake controller. This level of fidelity requires tying each

64 The New Collection, Volume 14, 2020

data parameter to another. However, many of these data parameters change based off
internal logic, not the data broadcast by another ECU. Identifying these parameter
dependencies is perhaps possible, but prone to errors without reverse engineering
the firmware of each ECU, or having data directly from the manufacturer. Given
this, we focus on the second option, with the intent to upgrade to the third as more
data is available.

3.1 CAN Simulation Format

For each source address seen in a data capture we identify the message ID and corres-
ponding average interval between messages, destination address, and priority; these
features represent all of the data we need to craft the arbitration ID of a CAN packet.
We prepend the ECU name to each source address. If we assume industrial stand-
ards such as J1939 we can automatically parse this data by sending a request to with
data 0xO0EEOO to identify the manufacturer, while using the standardized functions
for source address numbers to determine the purpose (e.g., Engine, Brakes, Trans-
mission). This data is sufficient for emulating bus controller message prioritization
while evaluating the test ECU’s ability to read and react to normal message flow from
the CAN Bus.

If we do not have a data capture we have a two options. If we have temporary
physical access to a system we can extract the firmware, performing static analysis
to extract the messages it sends. For consumer CAN this would be impractical, as
the purpose of each message ID are non-standardized. For industrial standards like
J1939, we could look for the 1892 provided message IDs. But perceiving anything
beyond the sent IDs would take a great deal of time, requiring the manual reverse
engineering of each data parameter. Extracting only message IDs implies we do not
have any design requirements pertaining to what data is sent over the bus.

Our second option assumes we have design requirements. If we only know the
messages we are expected to read, and the messages we are expected to send across
the bus, we can still recreate the CSF. We know the relevant arbitration ID fields,
can test a frequent, moderate, and delayed timing interval, and can randomize each
parameter in the data field. If each developer did this, then combined their CSFs, we
would generate a full system simulation.

As existing systems develop a backlog of CSFs, additions and upgrades to that
system can rely on them for development. Meanwhile the system maintainer can en-
sure different permutations of ECU firmware don’t result in bugs. Normally each
ECU would be attached to the analog components for a software integration lab. In-
stead our simulator, powered by CSFs, could connect to every analog component.

Rapidly Integrating Vehicle Computers Using Simulation 65

Figure 2: Raspberry Pi 3 testbed with Waveshare 2-CH CAN FD HAT. Both CAN channels
are connected to each other to detect transmitted messages over the CAN interface.

This allows for quickly changing between ECUs without modifying any real hard-
ware, applying DevOps techniques to embedded system development.

3.2 Emulating a CAN Bus

To make the ordering of messages realistic, we must emulate the collision avoidance
done by multiple ECUs, despite being one device transmitting. To do so efficiently we
use an event manager to enqueue messages as their average timing approaches. The
queue is a priority queue based on a minheap, as it provides O(log N) time complex-
ity for our important operations: appending messages, and extracting the minimum
message. Our CAN message object uses an overwritten less than operator, such that
the minheap uses the arbitration ID like a normal CAN collision avoidance system [3].
A test ECU connected to our CAN network will use the normal arbitration process.
From the physical layer this will look like two ECUs communicating, towards the
application layer the packets will appear the same.

4. METHODOLOGY

We extracted our CSF from 90 minutes of truck data using a Python script. To test
our generated CAN messages we used a 2 channel CAN hat on a Raspberry Pi. We
transmitted our generated CAN messages across channel 0, monitoring channel 1 to
analyze our simulated traffic. A picture of this test bed can be seen in Figure 2.

66 The New Collection, Volume 14, 2020

5. EXPERIMENT

To evaluate the accuracy of our data we compare the timing interval of each message
against that of the original data capture. If all of the same message IDs are visible
across the network, at a rate frequent enough to prevent data starvation by the test
ECU, we believe the CSF can be extended to any permutation of ECU configurations
for testing and development against representative CAN data.

6. RESULTS

We observed a similar distribution of message timing between our 90 minute data
capture and simulation. However, the simulation was unable to account for messages
with timing intervals that changed with the data going over the bus. An example
being a message varying the transmission rate with the speed of the engine. As long
as the test ECU is able to process all simulated messages at the fastest transmission
speed possible, usually set at 10ms [3], the test ECU will be adequately tested for input
handling.

7. FUTURE WORK

Easier testing leads to greater software quality assurance. We achieve this with a relat-
ively simple simulation now, but can do more with a responsive, data based solution.
The benefits to testing the full system are obvious. Instead we focus on the cyber
security elements for automotive security systems.

If high fidelity CAN traffic can be simulated, is it possible to distinguish between
simulated traffic and real car traffic in real time? Without this capability an attacker
can feed fake CAN data to any patch-based security solutions. By continuously con-
firming the CAN data is real, future work could prevent dynamic testing, and tamper-
ing of automotive security systems by attackers. This has potential auxiliary benefits
for research that relies on data coming from a real vehicle. Spoofing insurance data,
or location data is more difficult if it has the assurance of coming from a real vehicle.

Simulating the entire software integration lab means our simulator is capable of
acting as the computer for any device attached to the CAN Bus. This lets us act as a
redundant device. This enables system recovery post an intrusion prevention system
being activated, or for any ECU faults, without the cost of installing another engine
block.

Rapidly Integrating Vehicle Computers Using Simulation 67

8. CONCLUSION

Testing each configuration of the ECUs that control modern vehicles is difficult. To
counter this problem we propose a standardized file format, published by each man-
ufacturer containing all elements of the arbitration ID, a distribution of any message
timings, and initial setup information. Until manufacturers publish this standardized
file, defenders extract the relevant fields from a packet capture of an existing vehicle.
However, capturing this data does not scale for complex systems which update fre-
quently, or have multiple ECU configurations.

We demonstrate the ability to extract this information from an existing capture,
and create a simulation of traffic based on the created CSF. This simulation ignored
data dependencies, but otherwise matched timing distributions, while simulating the
message arbitration process of multiple ECUs speaking over each other. As we gain
more data to create more CSFs we can simulate more traffic. When we encode how
different data fields change into our format, we will simulate the entire system, sim-
plifying application layer testing. &

References

[1] Robert Bosch. ‘CAN specification version 2.0’ http://esd.cs.ucr.edu/webres/can20.pdf.
[2] Society of Automotive Engineers standard.
[3] Wilfried Voss. Guide to SAE j1939 - controller area network and j1939, 2018.

